Equivalence of nice Heegaard diagrams and combinatorial Floer homology

Jiajun Wang¹

¹LMAM, School of Mathematical Sciences Peking University, P. R. China

4th Russian-Chinese Conference on Knot Theory and Related Topics Bauman Moscow State Technical University Moscow, July 6th, 2017

- From Morse homology to Heegaard FLoer homology
- Ombinatorial descriptions
- Ohain complex
- Equivalence and invariance

★御★ ★注★ ★注★ 二注

A Morse function on a manifold is a real-valued function that looks like

$$f(x_1, \cdots, x_n) = -x_1^2 - \cdots - x_i^2 + x_{i+1}^2 + \cdots + x_n^2$$

near a critical point under some coordinate system.

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ の Q ()

A Morse function on the torus

Morse homology of the torus

So we have

$$\partial a = \partial b = \partial c = \partial d = 0$$

And the homology is

$$H_n^{Morse}(T^2) = \begin{cases} \mathbb{Z} & n = 0, 2\\ \mathbb{Z} \oplus \mathbb{Z} & n = 1 \end{cases}$$

< ∃⇒

Lagrangian intersection Floer homology

Given a symplectic manifold (M, ω) and two compact Lagrangian submanifolds L_0 and L_1 , the Floer homology is roughly the Morse theory for the following action functional on the path space

$$A: \widetilde{\mathcal{P}}(L_0, L_1) \to \mathbb{R}, \quad A(\gamma, [u]) = \int u^* \omega$$

The critical points of A are constant paths, or $L_0 \cap L_1$. The Euler-Lagrange equation is the Cauchy-Riemann equation and the gradient flow lines are pseudo-holomorphic curves. The Floer homology $HF(L_0, L_1)$ is generated by $L_0 \cap L_1$ with the differential counting dimension one flow lines.

Give 3-manifold Y with Heegaard splitting along a surface Σ_g , we can define a Lagrangian intersection Floer homology as follows: the space of flat connections on Σ_g is a symplectic manifold of dimension 6g - 6, and the flat connections on Σ_g that extends over each of the two handlebodies form a Lagrangian submanifold.

・ロン ・四マ ・ヨマー

Lagrangian intersection Floer homology

Given a symplectic manifold (M, ω) and two compact Lagrangian submanifolds L_0 and L_1 , the Floer homology is roughly the Morse theory for the following action functional on the path space

$${\mathcal A}:\widetilde{\mathcal P}(L_0,L_1) o {\mathbb R}, \quad {\mathcal A}(\gamma,[u])=\int u^*\omega$$

The critical points of A are constant paths, or $L_0 \cap L_1$. The Euler-Lagrange equation is the Cauchy-Riemann equation and the gradient flow lines are pseudo-holomorphic curves. The Floer homology $HF(L_0, L_1)$ is generated by $L_0 \cap L_1$ with the differential counting dimension one flow lines.

Give 3-manifold Y with Heegaard splitting along a surface Σ_g , we can define a Lagrangian intersection Floer homology as follows: the space of flat connections on Σ_g is a symplectic manifold of dimension 6g - 6, and the flat connections on Σ_g that extends over each of the two handlebodies form a Lagrangian submanifold.

・ロト ・四ト ・ヨト ・ヨト

Lagrangian intersection Floer homology

Given a symplectic manifold (M, ω) and two compact Lagrangian submanifolds L_0 and L_1 , the Floer homology is roughly the Morse theory for the following action functional on the path space

$$A:\widetilde{\mathcal{P}}(L_0,L_1)\to\mathbb{R},\quad A(\gamma,[u])=\int u^*\omega$$

The critical points of A are constant paths, or $L_0 \cap L_1$. The Euler-Lagrange equation is the Cauchy-Riemann equation and the gradient flow lines are pseudo-holomorphic curves. The Floer homology $HF(L_0, L_1)$ is generated by $L_0 \cap L_1$ with the differential counting dimension one flow lines.

Give 3-manifold Y with Heegaard splitting along a surface Σ_g , we can define a Lagrangian intersection Floer homology as follows: the space of flat connections on Σ_g is a symplectic manifold of dimension 6g - 6, and the flat connections on Σ_g that extends over each of the two handlebodies form a Lagrangian submanifold.

Example of Lagrangian Floer homology

So we have

 $\partial a = \partial c = b$

and its homology is $HF(L_0, L_1) \cong \mathbb{Z}$, generated by a + c or a - c.

→ < ∃→

Heegaard splittings

Every closed orientable three-manifold *Y* has an embedded surface which splits *Y* into two handlebodies. Such a decomposition is called a Heegaard splitting.

The following is the standard genus one Heegaard splitting for S^3

A Heegaard splitting is characterized by the Heegaard surface, together two sets of curves bounding disks in the two handlebodies. The above one is denoted by (T_1, A, B) .

A genus two Heegaard splitting of the three-sphere

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Э

Given a three-manifold Y with a Heegaard splitting $\mathcal{H} = (\Sigma, \alpha, \beta, w)$, where $w \in \Sigma \setminus (\alpha \cup \beta)$ is a reference point. The $\operatorname{Sym}^{g}(\Sigma - w)$ is a symplectic manifold, together with two Lagrangian tori

$$T_{\alpha} = \alpha_1 \times \cdots \times \alpha_g, \quad T_{\beta} = \beta_1 \times \cdots \times \beta_g$$

The Heegaard Floer homology HF(Y) is defined as follows: the generators consist of $T_{\alpha} \cap T_{\beta}$, or equivalently,

$$\mathbf{x} = (x_1, \cdots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \cdots \times (\alpha_g \cap \beta_{\sigma(g)})$$

and the differential counts for index one holo disk from x to y.

For a null homologous knot $K \subset Y$, $\mathcal{H} = (\Sigma, \alpha, \beta, w, z)$. $\widehat{HFK}(Y, K)$ is defined similarly, but in $\operatorname{Sym}^g(\Sigma - w - z)$.

(4 回) (4 \Pi) (

Given a three-manifold Y with a Heegaard splitting $\mathcal{H} = (\Sigma, \alpha, \beta, w)$, where $w \in \Sigma \setminus (\alpha \cup \beta)$ is a reference point. The $\operatorname{Sym}^{g}(\Sigma - w)$ is a symplectic manifold, together with two Lagrangian tori

$$T_{\alpha} = \alpha_1 \times \cdots \times \alpha_g, \quad T_{\beta} = \beta_1 \times \cdots \times \beta_g$$

The Heegaard Floer homology $\widehat{HF}(Y)$ is defined as follows: the generators consist of $T_{\alpha} \cap T_{\beta}$, or equivalently,

$$\boldsymbol{x} = (x_1, \cdots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \cdots \times (\alpha_g \cap \beta_{\sigma(g)})$$

and the differential counts for index one holo disk from x to y.

For a null homologous knot $K \subset Y$, $\mathcal{H} = (\Sigma, \alpha, \beta, w, z)$. HFK(Y, K) is defined similarly, but in $\operatorname{Sym}^{g}(\Sigma - w - z)$.

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

Given a three-manifold Y with a Heegaard splitting $\mathcal{H} = (\Sigma, \alpha, \beta, w)$, where $w \in \Sigma \setminus (\alpha \cup \beta)$ is a reference point. The $\operatorname{Sym}^{g}(\Sigma - w)$ is a symplectic manifold, together with two Lagrangian tori

$$T_{\alpha} = \alpha_1 \times \cdots \times \alpha_g, \quad T_{\beta} = \beta_1 \times \cdots \times \beta_g$$

The Heegaard Floer homology $\widehat{HF}(Y)$ is defined as follows: the generators consist of $T_{\alpha} \cap T_{\beta}$, or equivalently,

$$\mathbf{x} = (x_1, \cdots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \cdots \times (\alpha_g \cap \beta_{\sigma(g)})$$

and the differential counts for index one holo disk from x to y.

For a null homologous knot $K \subset Y$, $\mathcal{H} = (\Sigma, \alpha, \beta, w, z)$. $\widehat{HFK}(Y, K)$ is defined similarly, but in $\operatorname{Sym}^g(\Sigma - w - z)$.

A genus two Heegaard splitting of the three-sphere

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Э

The Floer chain complex depends on the complex structure

To define holomorphic disks, we choose a complex structure on Σ . The chain complex may be different when the complex structure varies (though the quasi-isomorphism type does not change).

When a < b, we have

Note that the case a = b is NOT generic.

Thus we see that the chain complex depends on the complex structure.

The Floer chain complex depends on the complex structure

To define holomorphic disks, we choose a complex structure on Σ . The chain complex may be different when the complex structure varies (though the quasi-isomorphism type does not change).

When a > b, we have

Note that the case a = b is NOT generic.

Thus we see that the chain complex depends on the complex structure.

To define holomorphic disks, we choose a complex structure on Σ . The chain complex may be different when the complex structure varies (though the quasi-isomorphism type does not change).

When a > b, we have

Note that the case a = b is NOT generic.

Thus we see that the chain complex depends on the complex structure.

The Poincaré homology sphere $\Sigma(2,3,5)$

#Generators: 21, # Differentials: ???

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

A Heegaard diagram $\mathcal{H} = (\Sigma, \alpha, \beta, w)$ is **nice** if every region is a bigon or square, except the (preferred) region containing w, which is a polygon. Regions are connected components of $\Sigma \setminus (\alpha \cup \beta)$.

Generators: $\mathbf{x} = (x_1, \dots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \dots \times (\alpha_g \cap \beta_{\sigma(g)})$ (σ 's are elements in S_g .) There are two types of differentials:

▲御▶ ▲屋▶ ▲屋▶

A Heegaard diagram $\mathcal{H} = (\Sigma, \alpha, \beta, w)$ is **nice** if every region is a bigon or square, except the (preferred) region containing w, which is a polygon. Regions are connected components of $\Sigma \setminus (\alpha \cup \beta)$.

Generators: $\mathbf{x} = (x_1, \cdots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \cdots \times (\alpha_g \cap \beta_{\sigma(g)})$ (σ 's are elements in S_g .)

There are two types of differentials:

A Heegaard diagram $\mathcal{H} = (\Sigma, \alpha, \beta, w)$ is **nice** if every region is a bigon or square, except the (preferred) region containing w, which is a polygon. Regions are connected components of $\Sigma \setminus (\alpha \cup \beta)$.

Generators: $\mathbf{x} = (x_1, \cdots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \cdots \times (\alpha_g \cap \beta_{\sigma(g)})$ (σ 's are elements in S_g .) There are two types of differentials:

$$\mathbf{x} = (x_1, x_2, \cdots, x_i, \cdots, x_g)$$

$$\mathbf{y} = (x_1, x_2, \cdots, y_i, \cdots, x_g)$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ …

A Heegaard diagram $\mathcal{H} = (\Sigma, \alpha, \beta, w)$ is **nice** if every region is a bigon or square, except the (preferred) region containing w, which is a polygon. Regions are connected components of $\Sigma \setminus (\alpha \cup \beta)$.

Generators: $\mathbf{x} = (x_1, \cdots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \cdots \times (\alpha_g \cap \beta_{\sigma(g)})$ (σ 's are elements in S_g .) There are two types of differentials:

$$\mathbf{x} = (x_1, x_2, \cdots, x_i, \cdots, x_g)$$

$$\downarrow$$

$$\mathbf{y} = (x_1, x_2, \cdots, y_i, \cdots, x_g)$$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

A Heegaard diagram $\mathcal{H} = (\Sigma, \alpha, \beta, w)$ is **nice** if every region is a bigon or square, except the (preferred) region containing w, which is a polygon. Regions are connected components of $\Sigma \setminus (\alpha \cup \beta)$.

Generators:
$$\mathbf{x} = (x_1, \cdots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \cdots \times (\alpha_g \cap \beta_{\sigma(g)})$$

(σ 's are elements in S_g .)
There are two types of differentials:

$$\mathbf{x} = (x_1, \cdots, x_i, \cdots, x_j, \cdots, x_g)$$

$$\mathbf{y} = (x_1, \cdots, y_i, \cdots, y_j, \cdots, x_g)$$

- (四) - (三) - ((-) - (2) - ((-) - (2) - ((-) - (2) - ((-) - (2) - ((-) - (2) - ((-) - (2) - ((-) - (2) - ((-) - (2) - ((-) - ((-) - (2) - ((-)

A Heegaard diagram $\mathcal{H} = (\Sigma, \alpha, \beta, w)$ is **nice** if every region is a bigon or square, except the (preferred) region containing w, which is a polygon. Regions are connected components of $\Sigma \setminus (\alpha \cup \beta)$.

Generators:
$$\mathbf{x} = (x_1, \cdots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \cdots \times (\alpha_g \cap \beta_{\sigma(g)})$$

(σ 's are elements in S_g .)
There are two types of differentials:

$$\mathbf{x} = (x_1, \cdots, x_i, \cdots, x_j, \cdots, x_g)$$

$$\downarrow$$

$$\mathbf{y} = (x_1, \cdots, y_i, \cdots, y_j, \cdots, x_g)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

A Heegaard diagram $\mathcal{H} = (\Sigma, \alpha, \beta, w)$ is **nice** if every region is a bigon or square, except the (preferred) region containing w, which is a polygon. Regions are connected components of $\Sigma \setminus (\alpha \cup \beta)$.

Generators: $\mathbf{x} = (x_1, \dots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \dots \times (\alpha_g \cap \beta_{\sigma(g)})$ (σ 's are elements in S_g .) There are two types of differentials:

$$\mathbf{x} = (x_1, \cdots, x_i, \cdots, x_j, \cdots, x_g)$$

$$\downarrow$$
 $\mathbf{y} = (x_1, \cdots, y_i, \cdots, y_j, \cdots, x_g)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Sarkar-W)

Every closed orientable three-manifold admits a nice Heegaard diagram. Every null-homologous knot in a closed orientable three-manifold admits a nice Heegaard diagram.

Theorem (W)

Every pointed Heegaard diagram is isotopic to a nice Heegaard diagram.

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Theorem (Sarkar-W)

Every closed orientable three-manifold admits a nice Heegaard diagram. Every null-homologous knot in a closed orientable three-manifold admits a nice Heegaard diagram.

Theorem (W)

Every pointed Heegaard diagram is isotopic to a nice Heegaard diagram.

< 回 > < 回 > < 回 >

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

æ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example: the trefoil knot, computation

$$\widehat{HC}(S^3, T) = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}, \quad \widehat{HC}(S^3) = \mathbb{Z}$$

Example: the Poincaré homology sphere $\Sigma(2,3,5)$

< 回 > < 回 > < 回 >

Э

Example: the Poincaré homology sphere - a nice diagram

Grid diagram and knot Floer homology

Every knot in S^3 has a grid diagram, which is a multiply-pointed genus one Heegaard diagram of S^3 .

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

э

Ozsváth and Szabó used convenient diagrams, which is a special kind of nice diagrams to define the hat Heegaard Floer homology, and showed the invariance.

э

Theorem (W)

Any two nice Heegaard diagrams for a closed oriented three-manifold can be transformed to one another via admissble moves.

Theorem (W)

For a given closed oriented three-manifold, the Floer homology does not depend on the choice of the nice Heegaard diagram.

・ロト ・四ト・ モト・ モート

Theorem (W)

Any two nice Heegaard diagrams for a closed oriented three-manifold can be transformed to one another via admissble moves.

Theorem (W)

For a given closed oriented three-manifold, the Floer homology does not depend on the choice of the nice Heegaard diagram.

Admissible move, isotopy

Here D'_1 and D'_2 either a bigon or the preferred region D_w .

★ Ξ ► < Ξ ►</p>

Admissible move, isotopy

Here D'_2 and D'_3 are either a bigon or the preferred region D_w .

< ∃⇒

Admissible move, handleslide and stablization

An *admissible stabilization* is a stabilization in a small neighborhood of the marked point w, followed by a finger move of the new beta curve to a bigon or D_w .

Admissible move, handleslide and stablization

An *admissible stabilization* is a stabilization in a small neighborhood of the marked point w, followed by a finger move of the new beta curve to a bigon or D_w .

Why a chain complex? index two disks.

Let y be a generator appearing in $\partial^2 x$, i.e., there is a index two disk connecting x to y. It will looks like (let us just consider squares, for simplicity)

Why a chain complex? "Gromov compactness"

We see that the generator y (white dot) appears in $\partial^2 x$ in pairs. So $\partial^2 x = 0$ with \mathbb{Z}_2 coefficients.

Why a chain complex? "Gromov compactness", continued

Why a chain complex? "Gromov compactness", continued

Proof of Equivalence, admissible handleslides

Proposition

A handleslide on a Heegaard diagram can be made admissible modulo admissible isotopies.

Proposition

Let $\mathcal{H} = (\Sigma, \alpha, \beta, \gamma w)$ be a pointed triple diagram. Suppose both $\mathcal{H}^1 = (\Sigma, \alpha, \beta, w)$ and $\mathcal{H}^2 = (\Sigma, \alpha, \gamma, w)$ are nice diagrams and the beta and gamma curves are isotopic in the complement of w. Then \mathcal{H}^1 and \mathcal{H}^2 can be made identical after admissible moves and ambient isotopy of Σ .

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

• Suppose \mathcal{H}_1 and \mathcal{H}_2 are two nice diagrams for Y.

- They become equivalent after some admissible moves.
- Make the alpha curves isotopic in $\Sigma \setminus w$ after admisible handleslides.
- Make the two set of alpha curves identical.
- By admissible handleslides of beta curves, make beta and gamma curves isotopic in $\Sigma \setminus w.$
- Make beta and gamma curves identical after admissible isotopies.

- Suppose \mathcal{H}_1 and \mathcal{H}_2 are two nice diagrams for Y.
- They become equivalent after some admissible moves.
- Make the alpha curves isotopic in $\Sigma \setminus w$ after admisible handleslides.
- Make the two set of alpha curves identical.
- By admissible handleslides of beta curves, make beta and gamma curves isotopic in $\Sigma \setminus w.$
- Make beta and gamma curves identical after admissible isotopies.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Suppose \mathcal{H}_1 and \mathcal{H}_2 are two nice diagrams for Y.
- They become equivalent after some admissible moves.
- Make the alpha curves isotopic in $\Sigma \setminus w$ after admisible handleslides.
- Make the two set of alpha curves identical.
- By admissible handleslides of beta curves, make beta and gamma curves isotopic in $\Sigma \setminus w.$
- Make beta and gamma curves identical after admissible isotopies.

- Suppose \mathcal{H}_1 and \mathcal{H}_2 are two nice diagrams for Y.
- They become equivalent after some admissible moves.
- Make the alpha curves isotopic in $\Sigma \setminus w$ after admisible handleslides.
- Make the two set of alpha curves identical.
- By admissible handleslides of beta curves, make beta and gamma curves isotopic in $\Sigma \setminus w.$
- Make beta and gamma curves identical after admissible isotopies.

- Suppose \mathcal{H}_1 and \mathcal{H}_2 are two nice diagrams for Y.
- They become equivalent after some admissible moves.
- Make the alpha curves isotopic in $\Sigma \setminus w$ after admisible handleslides.
- Make the two set of alpha curves identical.
- By admissible handleslides of beta curves, make beta and gamma curves isotopic in $\Sigma \setminus w.$
- Make beta and gamma curves identical after admissible isotopies.

- Suppose \mathcal{H}_1 and \mathcal{H}_2 are two nice diagrams for Y.
- They become equivalent after some admissible moves.
- Make the alpha curves isotopic in $\Sigma \setminus w$ after admisible handleslides.
- Make the two set of alpha curves identical.
- By admissible handleslides of beta curves, make beta and gamma curves isotopic in $\Sigma \setminus \textit{w}.$
- Make beta and gamma curves identical after admissible isotopies.

Let (\mathcal{C}, ∂) be a graded chain complex generated by $G = \{g_1, \dots, g_m\}$ and the differential ∂ is of degree -1. We write

$$\partial g_i = \sum_{j=1}^m a_i^j g_j.$$

Suppose $a'_k = 1$. Let C' be the vector space generated by $G \setminus \{g_k, g_l\}$ with the same degree as in C. Define

$$\partial'(g_i) := \sum_{j \neq k,l} \left(a_i^l + a_i^l a_k^l \right) g_j.$$

 $egin{aligned} \Phi:\mathcal{C} o\mathcal{C}', \quad \Phi(g_k):=0, \quad \Phi(g_l):=\sum_{j
eq k,l}a_k^jg_j, \quad \Phi(g_j):=g_j \ (ext{for } j
eq k,l) \ \Psi:\mathcal{C}' o\mathcal{C}, \quad \Psi(g_j)=g_j+a_j^lg_k \quad (j
eq k,l) \end{aligned}$

_emma

Let (\mathcal{C}, ∂) be a graded chain complex generated by $G = \{g_1, \dots, g_m\}$ and the differential ∂ is of degree -1. We write

$$\partial g_i = \sum_{j=1}^m a_i^j g_j.$$

Suppose $a'_k = 1$. Let C' be the vector space generated by $G \setminus \{g_k, g_i\}$ with the same degree as in C. Define

$$\partial'(g_i) := \sum_{j \neq k,l} \left(a_i^j + a_i' a_k^j\right) g_j.$$

 $egin{aligned} \Phi:\mathcal{C} o\mathcal{C}', \quad \Phi(g_k):=0, \quad \Phi(g_l):=\sum_{j
eq k,l}a_k^jg_j, \quad \Phi(g_j):=g_j \ (ext{for } j
eq k,l) \ \Psi:\mathcal{C}' o\mathcal{C}, \quad \Psi(g_j)=g_j+a_j^lg_k \quad (j
eq k,l) \end{aligned}$

_emma

Let (\mathcal{C}, ∂) be a graded chain complex generated by $G = \{g_1, \dots, g_m\}$ and the differential ∂ is of degree -1. We write

$$\partial g_i = \sum_{j=1}^m a_i^j g_j.$$

Suppose $a'_k = 1$. Let C' be the vector space generated by $G \setminus \{g_k, g_l\}$ with the same degree as in C. Define

$$\partial'(g_i) := \sum_{j \neq k,l} \left(a_j^j + a_l^j a_k^j\right) g_j.$$

 $egin{aligned} \Phi:\mathcal{C} o\mathcal{C}', \quad \Phi(g_k):=0, \quad \Phi(g_l):=\sum_{j
eq k,l}a_k^jg_j, \quad \Phi(g_j):=g_j \ (ext{for }j
eq k,l) \ \Psi:\mathcal{C}' o\mathcal{C}, \quad \Psi(g_j)=g_j+a_j^lg_k \quad (j
eq k,l) \end{aligned}$

_emma

Let (\mathcal{C}, ∂) be a graded chain complex generated by $G = \{g_1, \dots, g_m\}$ and the differential ∂ is of degree -1. We write

$$\partial g_i = \sum_{j=1}^m a_i^j g_j.$$

Suppose $a'_k = 1$. Let C' be the vector space generated by $G \setminus \{g_k, g_l\}$ with the same degree as in C. Define

$$\partial'(g_i) := \sum_{j \neq k,l} (a_i^j + a_i^j a_k^j) g_j.$$

$$egin{aligned} \Phi:\mathcal{C}
ightarrow\mathcal{C}', \quad \Phi(g_k):=0, \quad \Phi(g_l):=\sum_{j
eq k,l}a_k^jg_j, \quad \Phi(g_j):=g_j \ (ext{for } j
eq k,l) \ \Psi:\mathcal{C}'
ightarrow\mathcal{C}, \quad \Psi(g_j)=g_j+a_j^lg_k \quad (j
eq k,l) \end{aligned}$$

_emma

Let (\mathcal{C}, ∂) be a graded chain complex generated by $G = \{g_1, \dots, g_m\}$ and the differential ∂ is of degree -1. We write

$$\partial g_i = \sum_{j=1}^m a_i^j g_j.$$

Suppose $a'_k = 1$. Let C' be the vector space generated by $G \setminus \{g_k, g_l\}$ with the same degree as in C. Define

$$\partial'(g_i) := \sum_{j \neq k,l} (a_i^j + a_i^j a_k^j) g_j.$$

$$egin{aligned} \Phi:\mathcal{C}
ightarrow\mathcal{C}', \quad \Phi(g_k):=0, \quad \Phi(g_l):=\sum_{j
eq k,l}a_k^jg_j, \quad \Phi(g_j):=g_j \ (ext{for } j
eq k,l) \ \Psi:\mathcal{C}'
ightarrow\mathcal{C}, \quad \Psi(g_j)=g_j+a_j^lg_k \quad (j
eq k,l) \end{aligned}$$

Lemma

Proposition (Handleslide invariance)

Let \mathcal{H}_1 and \mathcal{H}_2 are two nice diagrams which differ by an admissible handleslide. Then $\widehat{CC}(\mathcal{H}_1)$ and $\widehat{CC}(\mathcal{H}_2)$ are chain equivalent.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

(a)

Peking University - Jiajun Wang

Proof of Invariance

Proposition (isotopy invariance)

Let \mathcal{H}_1 and \mathcal{H}_2 are two nice diagrams which differ by an admissible isotopy. Then $\widehat{CC}(\mathcal{H}_1)$ and $\widehat{CC}(\mathcal{H}_2)$ are chain equivalent.

(a)

Peking University - Jiajun Wang

Thank you!

спасибо! Я помню чудное мгновенье: Передо мной явилась ты, Как мимолетное виденье, Как гений чистой красоты.

< ∃ >